Commutativity in Operator Algebras
نویسندگان
چکیده
منابع مشابه
Order and Commutativity in Banach Algebras
S. Sherman has shown [4] that if the self adjoint elements of a C* algebra form a lattice under their natural ordering the algebra is necessarily commutative. In this note we extend this result to real Banach algebras with an identity and arbitrary Banach * algebras with an identity. The central fact for a real Banach algebra A is that if the positive cone is defined to be the uniform closure o...
متن کاملOperator Algebras
Notice that the left-hand side of the third equation is the sum of the left-hand sides of the first two. As a result, no solution to the system exists unless a + b = c. But if a + b = c, then any solution of the first two equations is also a solution of the third; and in any linear system involving more unknowns than equations, solutions, when they exist, are never unique. In the present case, ...
متن کاملOrientation in operator algebras.
A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1990
ISSN: 0002-9939
DOI: 10.2307/2048210